摘要

利用遗传算法、支持向量机以及神经网络等传统算法对船舶配电系统故障进行诊断,误诊率和漏诊率较高,影响了后续故障修复,不利复杂结构船舶配电系统故障恢复。针对上述问题,以模糊C—均值聚类算法取代以上3种故障诊断算法,解决误诊率和漏诊率高的问题,之后在故障诊断的基础上,实现故障修复,从而完成整个故障恢复。结果表明:与遗传算法、支持向量机以及神经网络3种传统故障诊断算法相比,模糊C—均值聚类算法的误诊率和漏诊率均更低(误诊率:1.14%,1.22%,2.00%;漏诊率:1.40%,0.43%,0.34%),说明本算法的诊断性能更好,更能全面、准确的检测出配电系统发生的故障,保证了后续故障修复的效率和准确性。

  • 单位
    南通航运职业技术学院