摘要
针对功能磁共振成像数据中含有多个高斯信号源的盲源分离问题,介绍了一种成组典型相关分析方法(Group BSS-CCA)。这个方法的组分析框架参照了GIFT工具箱中的Group ICA算法,具体的典型相关分析方法应用的是Friman等人提出的BSS-CCA算法。以验证该方法的有效性为目的,设计了仿真实验;结果表明,该方法能较好识别出混合在人脑功能磁共振成像数据的2个空间高斯信号。Group BSS-CCA算法对研究人脑的功能磁共振成像数据具有较高的实用价值。
-
单位国防科学技术大学; 中国人民解放军海军航空工程学院; 自动化学院