摘要

裂缝一直是隧道病害的重点检测对象,但传统人工巡检仅能通过肉眼发现后记录,人工识别精准度与效率完全取决于个人经验判断,无信息化手段辅助,作业效率识别精度亟待提升。针对以上问题,本文借助高清工业相机成像分辨率高、采集速度快等特点,将高清工业相机部署于轨道车上获取隧道表面裂缝病害信息,大幅提高了隧道裂缝识别效率,将识别精度提升至0.2 mm,同时融入优化的Cascade R-CNN算法,在有监督情况下训练隧道裂缝样本,最终实现了隧道裂缝病害的高效提取,同时研发了一套包含硬件数据采集、数据处理软件、数据管理平台的裂缝病害识别路线,真正意义上破除了识别慢、精度低、靠经验、难管理的技术壁垒。

  • 单位
    北京城建勘测设计研究院