摘要
本发明公开了一种基于Unet和LSTM的3D医学影像识别和分割方法,包括:医学影像预处理阶段:读取3D格式医学影像,将其按z轴向分解成2D的影像序列,在2D层面对影像数据进行z-score归一化处理;分割网络训练阶段:使用归一化处理的2D图像序列样本划分训练集进行训练,将U-net的中间层输出单独取出作为中间变量序列,使用中间变量序列训练LSTM网络;分割网络识别和推断阶段:将样本输入网络获得像素级分割输出,把输出序列合并为3D矩阵获得最终结果。本发明在3D医学影像的识别方面,采用将其分割为2D序列并结合循环网络处理中间变量的方式,降低了计算量,提高了识别工作的效率。
- 单位