随着科学技术的不断进步,不法分子窃电手段日趋专业化多样化,而传统的防窃电技术实时性及可行性较低。研究对运行中智能电能表用电信息的数据采集及特征提取,分析异常用电数据,应用机器学习的方法对特征值进行学习,并推导出用电异常的判断阈值,采用关联规则数据挖掘方法对独立检测的结果进行融合,从而实现窃电数据的挖掘。最后验证了模型建立的准确性,并推导出用电异常案例的甄别方法。