摘要
针对国内地铁车站客流无序性和突发性的现状,提出基于广义回归神经网络GRNN的地铁车站客流预警模型。以南京地铁全线网某时段客流数据为输入样本,运用GRNN神经网络进行训练与测试,得出预测数据并对比实际数据进行误差分析。结果表明:预测数据拟合,精度可行。将预测数据与南京地铁实时客流预警系统相结合,提出突发性大客流应急情况下的运营服务对策措施,为地铁运营管理单位避免突发大客流造成人员踩踏、恐慌等事故提供参考。
-
单位柳州铁道职业技术学院; 南京地铁运营有限责任公司