摘要

微博短文本蕴含着较为丰富的情感信息,基于微博数据的情感分析已成为网络舆情监测的重要任务。为提高中文微博情感分类效果,提出一种基于粒子群优化(PSO)的长短期记忆(LSTM)模型(PSO-LSTM),该模型在LSTM模型的基础上进行了参数优化,能够更有效获取微博信息。实验以新冠肺炎疫情期间的微博数据集构建PSO-LSTM模型,与其它模型进行了比对实验。实验结果表明,PSO-LSTM模型能够有效提升中文微博情感分类的性能。

  • 单位
    西南政法大学