摘要

设(X,d)是紧致度量空间,f:X→X是连续映射,(X)为X的所有非空紧致子集赋予由d诱导的Hausdorff度量而得到的空间,由f诱导的集值映射:k(X)→k(X)定义为(A)={f(a):a∈A}。主要考虑(X,f)的极限点集与(k(X),)的极限点集之间的关系,得到了如下结果:若F是的w-极限点,则F中含有的w-极限点;W()是闭集蕴含W(f)是闭集,它的逆不一定成立;在We拓扑下,若F∈k(X)含有f的w-极限点,则F本身是_f_的一个w-极限点;在W e拓扑下有W(f)是闭集蕴含W()是闭集。

  • 单位
    铜仁学院