摘要
针对混凝土坝变形监测数据中的粗差和异常测值问题,提出了一种数据异常识别和重构模型。模型利用关联规则量化变形序列与水位序列的关联性,将监测数据输入DBSCAN聚类算法寻找异常点,利用关联结果将监测数据异常点分为粗差点与反映大坝性态点两类,保留反映大坝性态点,剔除粗差点,并利用改进的小波神经网络对粗差数据进行重构,保证监测序列完整性。某拱坝变形监测数据验证结果表明,该模型可以准确识别监测数据中的异常值,并能够获得更为准确的重构数据,为大坝实测性态评价提供了新的分析方法。
-
单位水文水资源与水利工程科学国家重点实验室; 河海大学