为了实现汉语言在线学习用户学习行为聚类分析,针对FCM聚类结果易受其初始聚类中心选择的影响,提出一种基于IHS-FCM的汉语言学习用户学习行为聚类分析。选择参与维度、专注维度、规律维度、交互维度和学习成绩等作为学习行为的分析指标,学习者层次分为5个等级,分别为优秀、良好、中、合格和差。与HS-FCM、SVM和决策树对比发现,文中算法IHS-FCM具有更高的聚类准确率和更快的收敛速度以及更低的适应度,为学习者层次划分和优化课程学习提供了新的方法。