摘要
传统的心电疲劳分类方法虽然能有效地识别疲劳状态,但需要采集较长时间的信号,不能达到疲劳状态的实时监测。本文设计一种深层卷积神经网络模型用于评估操作员疲劳状态,对操作员的短时心电信号进行疲劳状态的自动分类。首先,提出一种将心电信号转化为图像的方法,将采集到的心电信号转化成二维图像,即将心电信号直接映射到二维空间转换成时域图片信息。然后,将图片送入深层卷积神经网络模型中去训练,实现对操作员疲劳状态的分类。本文方法降低了模型的复杂性,减少了模型的参数,同时训练的数据不需要经过类似噪声滤波、特征提取等任何预处理步骤。结果表明该模型能自动从心电信号中提取有效特征,实现对操作员非疲劳和疲劳两种状态的正确分类,分类准确率达到97.36%。
- 单位