摘要
在类别不平衡数据集中,由于靠近类边界的样本更容易被错分,因此准确识别边界样本对分类具有重要意义。现有方法通常采用K近邻来标识边界样本,准确率有待提高。针对上述问题,提出一种基于Tomek链的边界少数类样本合成过采样方法。首先,计算得到类间距离互为最近的样本形成Tomek链;然后,根据Tomek链标识出位于类间边界处的少数类样本;接下来,利用合成少数类过采样技术(SMOTE)中的线性插值机制在边界样本及其少数类近邻间进行过采样,并最终实现数据集的平衡。实验对比了八种采样方法,结果表明所提方法在大部分数据集上均获得了更高的G-mean和F1值。
- 单位