摘要

孔隙度是一种描述储层物性特征的重要参数。考虑砂岩与泥岩的孔隙度存在明显差异,提出了一种基于半监督高斯混合模型与梯度提升树的相控孔隙度预测方法,以实现砂岩储层孔隙度的精细描述。首先利用少量具岩相标签的测井数据确定高斯混合模型的初始聚类中心及对应的岩相类别;其次利用大量无标签测井数据优化高斯混合模型,实现砂岩与泥岩的准确划分;再次基于地质认识将泥岩孔隙度解释为固定的极小值,从而后续只开展砂岩孔隙度预测;然后将测井曲线拟合方法导出的孔隙度先验信息和测井敏感属性作为梯度提升树算法的多元输入信息,通过学习统计性岩石物理关系建立砂岩孔隙度的计算模型;最终根据岩相结果将砂岩段与泥岩段的孔隙度进行组合得到相控孔隙度。D油田的18口井数据测试结果表明:半监督高斯混合模型的岩相分类效果优于K均值、支持向量机、随机森林等机器学习算法,2口盲井的岩相分类准确率达到94.5%;所构建方法对2口盲井预测的相控孔隙度结果与真实孔隙度具有较高的一致性,平均相关系数达0.805。