摘要
透过窗户照射进室内的自然光随时间非线性变化,且在空间上的分布呈现不均匀性,导致照度模型预测误差大。在数据量有限的情况下,如何实现自然光下的室内光环境高精度建模是一项巨大的挑战。针对上述问题,提出一种主成分分析与贝叶斯优化梯度提升回归树的室内照度预测算法。该算法首先利用哑变量处理样本数据,通过主成分分析法充分考虑照度数据多特征之间的内在相关性并进行特征重塑;然后利用随机森林确定梯度提升回归树的初始参数,提高其收敛速度和稳定性;最后融合交叉验证和贝叶斯优化算法自适应确定梯度提升回归树的超参数组合,从而进一步提升该模型对室内照度分布的预测性能。实验结果表明,在不同气象、时间条件下,该算法对600个测试样本的照度的R2、MAE和RMSE分别为0.9912、18 lx和40 lx,均优于其他几种算法,且能够显著降低样本偏差值。
- 单位