摘要

针对辅助动力装置(APU)控制系统传感器故障,提出了一种基于协方差优化集成极限学习网络(COSELM)的传感器智能解析余度方法。该方法能够根据在线序列预测误差的最小方差来自适应更新单个在线序列极限学习机的权重系数,发挥和权衡各个学习模型的优势,通过提高模型算法的稳定性和泛化性,改善传感器智能解析余度的精度。通过在某辅助动力装置控制系统传感器解析余度的验证表明,提出的COSELM方法可以解决传感器在发生偏置故障时的信号重构问题,重构误差不超过1%,适用于不同辅助动力装置个体,为其提供可靠的解析余度。