摘要

针对带约束的多目标优化问题,提出一种改进的蚁群算法(Ant colony optimization,ACO)。在基本算法的基础上,通过对初始信息素进行混沌处理,动态调整参数α(信息启发式因子)和β(期望启发式因子)值,引入最大-最小蚂蚁系统来对算法进行改进,利用Pareto的排序机制对搜索到的可行解进行分类排序,得出可行解。对4个经典测试函数的仿真结果表明,文中算法在均匀性、寻有能力均优于另两种算法。