摘要

提出基于K均值集成和支持向量机相结合的P2P流量识别模型,以保证流量识别精度和稳定性,克服聚类识别模型中参数值难以确定、复杂性高等缺点。对少量标签样本采用随机簇中心的K均值算法训练基聚类器,按最大后验概率分配簇标签,无标签样本与其最近簇标签一致;按投票机制集成无标签样本标签信息,并结合原标签样本训练支持向量机识别模型。该模型利用了集成学习稳定性和SVM在小样本集上的良好泛化性能。理论分析和仿真实验结果证明了方案的可行性。