摘要
针对困难气道气管插管过程中内窥镜图像视角较小、目标尺度变化大、相互遮挡等问题,融合内窥镜图像和CO2浓度信息,提出基于深度学习的多模态气管插管智能目标检测算法。首先,对传统的YOLOv3网络进行改进,利用不同扩张率的空洞卷积构建并行多分支空洞卷积模块,并对输出特征进行上采样和张量拼接;其次,根据多路CO2浓度差异,利用矢量化定位算法定位目标中心位置,校正YOLOv3得到的边界框的中心坐标,提升小目标检测的精度,辅助气道位置的定位;最后,基于该算法,研发了新型多模态气管插管辅助装置初代样机,并在模拟气道中进行实验,验证其可行性。在模拟气道中,该新型辅助装置的操作时间中位数为15.5 s,操作成功率可达97.3%。研究结果表明,基于深度学习的多模态气管插管智能目标检测算法能够有效地辅助气管插管操作。
- 单位