摘要

针对传统的全卷积网络分割精度低、效果差等问题,该文提出一种结合条件随机场的改进全卷积网络棉田冠层图像分割方法。首先通过提取和学习图像特征对全卷积网络进行训练以优化其分割性能,得到初步分割结果和训练后的全卷积网络模型;接着将初步分割结果以像素和像素对应的分类向量形式输入到条件随机场中,同时结合像素间相对关系构建能量函数再进行训练,对初步分割结果进行优化得到训练后的条件随机场模型;进而通过验证过程对全卷积网络和条件随机场模型参数进一步调优,得到最优的全卷积网络和条件随机场;最后结合最优的全卷积网络和条件随机场实现棉田冠层图像分割并进行试验。试验结果表明:该方法的平均像素准确率为83.24%,平均交并比为71.02%,平均速度达到0.33 s/幅,与传统的全卷积网络分割性能相比分别提升了16.22和12.1个百分点,改进效果明显;与Zoom-out和CRFas RNN(conditional random fields as recurrent neural networks)分割方法进行对比,平均像素准确率分别提升了4.56和1.69个百分点,平均交并比分别提升了7.23和0.83个百分点;与逻辑回归方法和SVM(support vector machine)方法进行对比,平均像素准确率分别提升了3.29和4.01个百分点,平均交并比分别提升了2.69和3.55个百分点。该文方法在背景复杂、光照条件复杂等环境下可以准确分割出冠层目标区域,鲁棒性较好,可为棉花生长状态自动化监测提供参考。