摘要
为了提高网络入侵检测(NID)系统的检测准确度,适应现代网络需求,提出一种入侵检测的深度学习方法。该方法利用堆叠式非对称深度自编码器(NDAE)构建深度学习分类模型,将堆叠式NDAE(深度学习)和随机森林(浅层学习)的优点相结合,以支持NID在现代网络中的运行。实验使用KDD Cup’99和NSL-KDD基准数据集对所提分类器进行评价。实验结果证明了所提方法的有效性,其分类器能够有效降低网络入侵检测的时间,精简数据特征,提高检测精度,实现了最高约5%的召回率提升和最高98.81%的训练时间缩减。
- 单位