摘要

针对传统滚动轴承故障诊断中复杂的特征提取问题,利用深层残差网络能够增强诊断模型非线性表征能力的特点,通过引入通道注意力与空间注意力机制,提出一种基于多注意力机制端到端的滚动轴承智能故障诊断方法。首先,通过原始振动加速度信号经过积分运算得到速度和位移;然后,将3者组合成具有特征增强的图像,输入至结合了多注意力机制的深层残差网络实现特征提取;最后,利用多分类函数完成滚动轴承故障分类。在本地实验室轴承数据集上进行了验证,结果表明,所提方法的诊断准确率达到了97.50%。验证了基于多注意力机制端到端的滚动轴承智能故障诊断方法的可行性和有效性,可为滚动轴承的精确故障诊断提供支持。