针对芯片图像分类过程中图像数量过少、需要大量人工标注以及效率低的问题,提出一种基于迁移学习的VGG-16网络芯片图像分类方法。该方法通过VGG-16网络直接从原始像素中自动学习图像特征,有效减少人工标注的成本,同时对比了VGG-16网络模型和基于迁移学习的VGG-16网络模型的准确率及其混淆矩阵。实验结果表明,所提出的基于迁移学习的VGG-16网络模型对芯片图像分类效果要优于原VGG-16网络模型。