基于RF-LSTM组合模型的股票价格预测

作者:李辉; 化金金; 邹波蓉*
来源:河南理工大学学报(自然科学版), 2022, 41(01): 136-142.
DOI:10.16186/j.cnki.1673-9787.2019100021

摘要

股票数据具有非线性和复杂性等特点,单一模型预测效果不佳,针对此问题,提出一种RF-LSTM组合模型,用于预测股票的收盘价。首先,利用Tushare财经数据包获取股票数据,构建特征集,并对数据进行归一化处理;其次,考虑到多特征之间存在高度的非线性和信息冗余问题,利用随机森林(RF)选择最优特征集,降低数据维度和训练复杂度;最后,利用深度学习中适合处理时间序列的长短期记忆网络(LSTM)对股票价格进行预测,并对预测模型进行参数调优。结果表明,与单一结构的LSTM神经网络模型预测相比,本文提出的RF-LSTM组合模型预测的平均绝对误差(MAE)、均方误差(MSE)和均方根误差(RMSE)分别减小了13.11%,6.70%和12.54%。该组合模型可提高股票价格预测的准确性。