摘要

钻速预测是钻井优化的重要组成部分,机器学习算法是当前实现准确钻速预测的重要手段,准确的特征选择是保证机器学习精度的关键途径。基于南海某井眼的实际钻井数据,本文采用一种融合特征选择法从钻井特征参数中选出井径、钻井液出口温度、钻井液入口密度、钻井液出口密度、K值、塑性粘度、滤失量、上覆压力、孔隙压力、和喷嘴等效直径共10种参数。将优选出的参数作为模型输入,引入集成的梯度提升树(Gradient Boosting Decision Tree,GBDT)算法建立机械钻速预测模型。将建立的模型与常规机器学习算法模型进行对比试验。试验结果显示,所提出的融合特征选择算法模型精度较全特征模型高2%,较常用机器学习模型平均高14.5%,该研究为钻井参数的准确、快速寻优提供了有效解决方案,对提高钻进速率具有一定的指导意义和实际应用价值。