同一应用领域不同时间、地点或设备,采集的样本数据可能存在扰动、噪音或缺失,如何对样本数据集进行有效的预处理是其进一步应用的前提.针对上述问题,提出一种新的基于压缩集密度估计(RSDE)算法的领域自适应概率密度估计方法A-RSDE,通过学习源域(训练域)知识,使目标域(测试域)概率密度估计更接近真实概率密度分布,并用基于近似最小包含球的核心集快速算法求解A-RSDE,将其应用于大数据集密度估计.Benchmark和UCI数据集上的实验表明,该算法具有较好的性能.