摘要
为解决移动机器人在动态环境下的路径规划问题,将Informed-RRT*和人工势场法相融合,提出全局与局部规划算法相融合的路径规划方法。首先,针对Informed-RRT*算法采样效率低,以及得到路径不满足机器人运动学约束的问题,采用目标偏置法与自适应步长法,减少冗余搜索与不必要树的生长;同时,引入走廊优化与时间重分配法,优化路径节点,使路径更加平滑。其次,针对人工势场法易陷入局部极小值和目标点附近不可达的问题,采用平滑窗格策略,增设全局路径子目标点,使机器人能够逃离局部极小值,完成规划任务。仿真结果表明,静态环境中自适应步长Informed-RRT*算法相比于Informed-RRT*算法求解时间缩短了71.98%;动态环境中,混合算法相比于人工势场法,搜索时间缩短了15.4%,路径长度缩短了11.1%。
- 单位