摘要
针对往复压缩机轴承振动信号的复杂多分量耦合特性,提出了一种基于参数优化VMD和MDE的往复压缩机轴承故障诊断方法。利用遗传算法搜索VMD算法的最佳影响参数组合,确定VMD算法需要设定的带宽参数和分量个数对故障信号分解。计算分解后各BLIMF分量的峭度值,筛选出最佳BLIMF分量并重构故障信号,然后对重构后故障信号进行MDE分析形成故障特征向量,输入到极限学习机中进行分类识别。对往复压缩机轴承故障实测信号进行分析,实验结果表明,该方法可有效提取出往复压缩机轴承故障特征,特征向量具有较好可分性,实现了往复压缩机轴承故障特征的有效识别。
- 单位