摘要

为了实现人群中跌倒行为的实时检测,预防踩踏事件的发生,针对跌倒行为检测实时性以及特征提取能力不足的问题,提出了一种改进YOLOv5s的跌倒行为检测算法。通过改进基本残差块,主干网络添加混合域注意力机制,颈部引入双向特征金字塔结构,以增强网络检测精度,同时保证运算量。结果表明,相比原始网络,所提算法检测准确率由94.1%提升到97.0%,精度值由91.2%提升到95.4%,且算法检测速度最快可达0.028 s,每秒检测图片帧数可达36.3,满足实时性要求。