摘要

为实现小数据样本复杂田间背景下的玉米病害图像识别,提出了一种基于迁移学习的卷积神经网络玉米病害图像识别模型。在VGG-16模型的基础上,设计了全新的全连接层模块,并将VGG-16模型在Image Net图像数据集训练好的卷积层迁移到本模型中。将收集到的玉米病害图像数据集按3∶1的比例分为训练集与测试集。为扩充图像数据,对训练集原图进行了旋转、翻转等操作。基于扩充前后的训练集,对只训练模型的全连接层和训练模型的全部层(卷积层+全连接层)两种迁移学习方式进行了试验,结果表明,数据扩充和训练模型的全部层能够提高模型的识别能力。在训练模型全部层和训练集数据扩充的条件下,对玉米健康叶、大斑病叶、锈病叶图像的平均识别准确率为95. 33%。与全新学习相比,迁移学习能够明显提高模型的收敛速度与识别能力。将训练好的模型用Python开发为图形用户界面,可实现田间复杂背景下玉米大斑病与锈病图像的智能识别。