摘要

针对发动机缸盖缺陷人工目视劳动强度大、误检漏检率高的问题,提出了一种基于正样本训练的图像修复和缺陷自动识别方法。基于生成对抗网络思想,构建图像修复生成对抗网络模型,若样本中存在缺陷区域,则重构网络可修复这些缺陷区域,然后使用图像差分法对输入图像与修复图像进行比较,并采用最大类间方差法自适应确定残差图像的阈值,以确定准确的缺陷区域。测试结果表明,在工作亮度范围内,孔洞、磕碰和划痕三种缺陷识别率可达到95%、95%和80%。