摘要

为保障车路协同环境下信息的可信交互,分析了车车、车路协同信息交互流程和不同模式下的交互需求,设计了车路协同可信交互架构;构建了车辆行为状态推演模型与路径扰动因子量化模型,设计了车辆主体可信度计算方法与等级评估规则,实现了车辆主体行为可信认证;通过对交通业务的有效特征理解构建了消息紧急度量化模型,利用低分辨率筛选策略初步过滤了消息报文,基于支持向量机(SVM)对消息内容进行了深度理解,形成了多分辨率交互内容认知方法;使用包含OMNeT++和SUMO仿真模拟器的Veins搭建了仿真测试环境,针对不同网联自动驾驶车辆(CAV)渗透率下的开放道路和交叉口场景开展了仿真试验,对提出的车路协同可信交互方法进行了测试验证。研究结果表明:结合交通业务特征理解能够有效改善车路协同信息交互的可信度判别,提出的方法对信标位置消息的平均认知正确率可以达到90.91%,相比基于时效性检测的可信交互方法提高了8.68%;在安全效率消息可信交互验证试验中,随着恶意车辆比例的增加,传统基于投票机制的车路协同可信交互方法逐渐失效,而提出的方法在保证单次认证时延小于13 ms的条件下,平均正确率达到94.96%,较传统基于反向传播(BP)神经网络的方法提高了3.05%,且CAV渗透率越大,可信交互检测结果的准确率越高,漏报率越低,能够满足车路协同可信交互需求。

全文