摘要
针对通过施工现场和实验室试验获取混凝土箱梁水化热仿真分析所需的热工参数缺乏一定的准确性和便捷性,以某混凝土箱梁水化热过程为试验背景,结合文献研究结果确定混凝土箱梁热工参数的取值范围,采用方差分析确定各参数对温度的敏感性,并通过排序筛选敏感性高的参数作为待反演参数,基于标准粒子群算法,对比遗传算法对敏感性高的5个参数进行反演.研究结果表明:混凝土箱梁浇筑过程中,水泥水化热对温度的影响最大,智能算法能有效反演混凝土箱梁热工参数;当迭代次数增大到一定的程度时,标准粒子群算法对应的目标函数小于遗传算法对应的目标函数,遗传算法收敛过程曲线比较平缓,而标准粒子群算法的早期有突变.
- 单位