研究提出了一种简洁的适于混合计分的非参数认知诊断方法—曼哈顿距离判别法(MDD),将HDD纳入MDD框架,通过模拟和实证研究考察了MDD的适宜性,结果表明:(1)MDD简单易解,适于混合计分情境,0-1计分时,HDD是MDD的一个特例;(2)MDD的判准率较高,三种判别方法 RMDD、BMDD和WMDD差异极小;(3)MDD具有非参数方法不受知识状态影响、对样本容量无依赖,与属性个数关系不大等特点;(4)MDD在实践中的应用效果较好,为CDA走向实践、走向课堂提供了可能。