基于YOLOv4的轻量级火焰检测算法

作者:王海群; 张成君*; 张怡
来源:山东科技大学学报(自然科学版), 2023, 42(01): 91-99.
DOI:10.16452/j.cnki.sdkjzk.2023.01.010

摘要

为改善现有火焰检测算法参数量大、训练时间长等缺点,本研究提出基于YOLOv4改进的轻量级火焰检测算法。算法以YOLOv4为基本框架,采用MobileNet v3作为主干网络,利用深度可分离卷积替代YOLOv4中颈部网络和检测网络的3×3普通卷积,并将激活函数更换为H-swish函数,构建出一种轻量级火焰检测算法。不仅参数大幅度减少,而且能提升火焰检测精确度,降低火焰漏报率。实验证明,在相同的训练条件下,本研究提出的算法参数量个数降为YOLOv4的18%,训练时间减少44%。当检测相同火焰图像时,与MobileNet v3-DW-YOLOv4算法相比,本研究算法的精确度提升1%,检测速度为每秒46帧,能更好地嵌入到终端设备上进行实时检测。

全文