摘要
本文主要研究基于归纳关系预测的知识图谱补全方法,现有的方法仅限于直推式推理,训练期间必须知道全部的实体集合。本文提出一种基于图神经网络的关系预测方法,首先提取图神经网络的局部有向子图进行推理,其次引入一个用于归纳关系推理的节点-边双向信息传递机制,以加强节点和边之间的信息交流并有效处理三元组中的非对称关系。鉴于实体之间不同的连接路径揭示了其关系的本质并有助于预测推理,因此考虑两个实体之间的关系路径,用适用于归纳式推理的关系类型表示其路径,定义了边嵌入的注意力公式,对在训练集中没有见过的实体进行关系预测。在适用于归纳推理方法的常用基准数据集上的实验结果表明,本文方法相比于基线模型提高了三元组的预测精度。
- 单位