摘要
新能源风光场站参与未来放松管制情况下的零售电力市场面临如下问题:(1)上网电量结算方式由原有的含补贴的固定电价转为无补贴的实时电价;(2)新能源风光场站在运行和维护过程中会遇到大量的不确定因素,包括风速、太阳辐照度、限功率运行情况以及升压站内部用电等;(3)新能源风光场站需要在最小化运维成本的情况下满足较高运维水平的要求。本文引入了一种无监督的深度强化学习算法,利用新能源风光场站内部可控电力设备解决运维及交易过程中遇到的不确定因素,并使售电电量与运维满意度最大化。大量基于实际数据的仿真结果表明,本文所提出的基于深度强化学习算法的运维及交易策略既能最大限度地降低新能源风光场站运维成本,又能最大限度地向零售电力市场售电并维持较高的综合运行水平。