摘要
针对传统BP神经网络存在的学习速度慢、易陷入局部极值等问题,利用鲸鱼优化算法(WOA)以及狼群算法(WPA)混合优化BP神经网络的权值和阈值,构建WPA-WOA-BP神经网络模型,并对PM2.5浓度进行预测。实验结果证明,WPA-WOA-BP神经网络模型预测稳定性高,可用于PM2.5浓度的预测,且预测精度优于BP神经网络、WPA-BP神经网络和WOA-BP神经网络模型。
-
单位桂林理工大学; 广西空间信息与测绘重点实验室