摘要
共享单车具有很强的流动性和高随机性,为了更加准确地预测某区域内每小时的单车使用数量,通过爬取纽约市Citi Bike共享单车的天气特征数据信息,并分析时间因子、气象因子等对单车需求量的影响;采用长短期记忆(long short-term memory,LSTM)神经网络模型预测共享单车的短期需求量,并与传统的循环神经网络(recurrent neural network,RNN)和BP(back-propagation)神经网络模型预测结果进行比较。实验结果表明:影响单车需求量的主要因素包括温度、节假日、季节以及早晚高峰时间段等因素;与传统BP神经网络算法和循环神经网络RNN算法相比,LSTM鲁棒性高,泛化能力强,且预测结果曲线与真实结果曲线相吻合;预测精度高(精确度为0.860)均方根误差最小(为0.090),误差小。可见LSTM模型可以用来对共享单车的短时需求量进行预测。
- 单位