摘要

该文研究一类具有一般性的带非局部扩散项的霍乱模型,用不同的函数表示人与人之间以及人与环境之间的发生率,以及霍乱病菌的增长函数.当R0>1,c>c*时,通过构造上下解函数,结合Schauder不动点定理讨论该模型行波解的存在性,再构造Lyapunov函数讨论行波解的渐近性.当c<c*时,通过双边拉普拉斯变换和Fatou引理证明该模型行波解的不存在性.

全文