摘要

针对藏文新闻主客观分类的现实需求,该文以藏文新闻文本数据为研究对象,提出一种基于混合表示的藏文新闻主客观句子分类模型(HRTNSC)。首先通过融合音节级特征和包含当前音节的单词级特征丰富模型输入的语义信息,然后将融合后的特征向量输入到BiLSTM+CNN网络中进行语义提取,最后采用Softmax分类器实现句子的主客观分类。测试结果表明,HRTNSC模型在Word2Vec音节向量+BERT音节向量+注意力机制加权的单词向量特征组合下最优F1值达到90.84%,分类效果优于对比模型,可以较有效地分类主客观句子,具有一定的应用价值。