摘要
图像配准是一种建立两幅图像空间对应关系的过程,它被广泛应用于计算机视觉、遥感数据分析及图像处理中,特别是在影像引导放射治疗领域,图像配准发挥着巨大作用。但由于受呼吸运动的影响,精确的肺部影像配准依然是一个充满挑战的难题。目前,尺度不变特征变换(Scale-Invariant Feature Transform,SIFT)已被用于医学图像配准中,并且取得了较理想的结果。然而,SIFT检测到的仅是图像的块特征,不能有效的反映肺部的运动。文章提出了一种基于Harris和SIFT算子的杂交型特征检测方法,这种方法能有效检测肺部的组织特征,如血管分叉点和肺部边界等。除此之外,为了有效去除特征匹配过程中产生的错配点,还提出了一种基于互相关和组织结构不变性的滤除错配点方法。文章最后采用一系列不同呼吸周期的肺部CT影像来对所提出的算法进行验证。定性和定量的结果表明,该算法较传统的SIFT算法更具优越性。
-
单位中国科学院深圳先进技术研究院; 哈尔滨工业大学深圳研究生院