摘要

当代社会睡眠问题日益突出,及时检测评估睡眠质量有助于诊断睡眠疾病.针对目前市面上睡眠监测类产品发展参差不齐的现状,本文搭建了一个基于双通道脑电信号的在线实时睡眠分期系统,利用第三方接口脑环获取脑电数据,结合CNN-BiLSTM神经网络模型,在PC电脑端实现了在线的实时睡眠分期与音乐调控功能.系统使用基于卷积神经网络CNN和双向长短时记忆神经网络BiLSTM相结合的算法模型对脑电信号进行自动特征提取,CNN能够提取高阶特征, BiLSTM可以捕捉睡眠数据前后的依赖性和关联性,睡眠分期准确率更高.实验结果表明,本文算法模型在Sleep-EDF公共数据集上的四分类任务中取得了92.33%的分期准确率,其Kappa系数为0.84,本系统的实时睡眠分期功能在自采集睡眠数据分期实验中取得79.17%的分期准确率,其Kappa系数为0.70.相比其他睡眠监测类产品,本系统睡眠分期准确率更高,应用场景更多样,实时性和可靠性强,并且可以根据分期结果对用户进行相应的音乐调控,改善用户睡眠质量.

全文