摘要
遥感影像中目标的检测问题一直是遥感图像处理领域的热点和难点。传统的检测算法,在解决场景复杂,尺度差异大的目标时性能不高,而使用深度学习很难兼顾遥感目标的准确性和实时性。针对这一问题,设计了一种利用多尺度融合特征检测目标的轻量级网络,并提出一种能够从三个维度上生成像素自适应特征权重的注意力机制帮助提取显著特征,同时采用了最新的优化算法改善模型的性能,在减少计算量的同时保证了检测精度。实验结果表明,该模型MAP@0.5可达0.945,F1可达0.841,检测速度满足实时性要求。
-
单位湖北文理学院; 新疆大学; 教育学院