摘要

为了提高多类半监督分类的性能,提出了一种基于证据理论的多类协同森林算法(DSM-Co-Forest).首先,通过"多对多"模式将有标记的多类数据随机拆分为多个二类数据集,并以此训练二类基分类器;然后,利用多个基分类器同时对未标记样本进行预测,并利用证据组合算法挑选出可信度较高的未标记样本;最后,将高可信度的未标记样本加入到原训练样本中,以迭代更新其他的基分类器,从而提高分类器的整体性能.通过在一些公共数据集上进行实验,并与其他半监督分类算法进行对比,验证了所提算法的可行性和有效性.