摘要

木材抗弯强度是评价木材力学性质的重要指标,其快速准确预测具有工程应用价值和科学意义。重点研究了使用近红外光谱分析光谱特征优选的卡尔曼滤波(KF)方法进行PLS建模,完成木材抗弯强度的预测。试验用126个蒙古栎无疵试样,依据国家标准《木材物理力学性质试验方法》测量抗弯强度得到力学真值;在9001 700nm波段进行近红外光谱采集,一阶导数与S-G卷积结合进行光谱预处理;然后,将光谱及抗弯力学样本视为动态系统,光谱冗余波长视为噪声信号,通过KF迭代得到系数矩阵和标准方差,并运用二者比值实现特征优选;最后建立蒙古栎的偏最小二乘(PLS)抗弯强度近红外模型。结果表明,经过KF优选后,光谱变量数由117减小到18个,预测模型的相关系数r=0.81、预测误差均方根RMSEP=6.59;为了进一步验证方法有效性,与无信息变量消除法(UVE)、连续投影方法(SPA)特征选择方法进行了对比,KF特征优选后的预测相关系数r分别提高了0.05和0.16,预测误差均方根RMSEP降低了2.33和7.66,采用KF特征选择建立的模型预测结果最佳。KF作为特征方法可有效选择近红外光谱特征波长,降低模型维度,提高模型的适用性与准确性。