摘要
部分领域自适应作为领域自适应一种特殊且重要的场景,由于其存在的异常源类经常导致负迁移,从而造成训练和建模效果不理想,为此提出了一种深度加权子域自适应网络。该网络针对深度网络提取的类别特征中存在异常源类造成的负迁移,设置重要性加权自适应权重调节机制,解决异常源类造成的分类精度较低的问题;并提出局部加权最大均值差异策略,对齐相关子域的分布,获取更多的细粒度信息,解决全局对齐中迁移性能不高的问题。在Office-31、Office-Home数据集上与PADA、SAN、IWAN等方法的仿真对比实验结果表明,该方法可以获得比现有主流方法更高的分类准确率,有效地解决迁移过程中异常源类造成的负迁移问题,并且水下数据集用于域适应的平均准确率达到90.55%。
- 单位