摘要
自然语言推理的很多问题都可以抽象为句子匹配问题,传统的匹配方法采用的是对句子向量或句子间的词向量做匹配,这些方法都只关注句子自身的语义信息,忽略句子之间的组合特征,造成语义损失.本文提出多粒度句子交互匹配方法,引入Attention机制,通过不同粒度、不同层次的句子交互,利用深度神经网络模型(BiLSTM)对句子蕴含关系进行分类.本文方法在SNLI语料库上进行了丰富的实验,结果表明该方法在自然语言推理任务上比当前最优的方法获得了更好的表现.
-
单位中山大学; 安徽电子信息职业技术学院