摘要
研究目标:根据企业财务比率数据,将企业经营状况通过评级机构所公布的信用级别反映出来。研究方法:本文针对传统随机森林模型在投票机制中存在的弊端,通过改进指标选取、重要性排序及算法优化三个方面,创新性地将PSO算法运用于基于加权随机森林模型的企业信用评级中,并对2016年2840家中国上市企业的财务数据进行应用分析。研究发现:采用PSO优化加权随机森林模型的上市公司信用评级准确率有所提高;其评级准确率普遍优于传统的决策树、支持向量机和随机森林模型;制造业企业信用评级状况不佳,被标记为财务危险的企业占比较多。研究创新:在企业信用评级领域提出一种基于PSO优化加权随机森林模型。研究价值:为完善企业信用评级体系提供新思路。
- 单位