摘要

为了准确识别转子不平衡、不对中、碰摩和油膜涡动等故障,利用小波分析对转子故障信号进行4层分解,将频率由高到低的5个分支信号作为奇异值分解(Singular Value Decomposition,SVD)矩阵的行向量,经奇异值分解后得到信号的故障特征值。通过支持向量机(Support Vector Machine,SVM)在选择不同的核函数和结构参数下比较其对转子故障诊断结果的影响。结果表明在选择最优SVM模型和参数的基础上,对SVD获得的故障特征值进行诊断,得出了准确的诊断结果。

  • 单位
    解放军理工大学野战工程学院