摘要

针对多极化合成孔径雷达影像地物分类特征表征性较弱及全卷积网络分类精度较低的问题,文中提出结合编码-解码网络(E-D-Net)和条件随机场(CRF)的全极化合成孔径雷达(SAR)土地覆盖分类算法.首先,利用Freeman分解和Pauli分解建模全极化SAR影像,提取各分解对应的散射特征.再借鉴语义分割网络模型的建模思想和多尺度卷积单元构建对称网络模型,将多尺度非对称卷积单元嵌入中层,设计E-D-Net网络模型.通过E-D-Net网络模型对PolSAR影像Freeman分解散射特征进行多层自主学习,获得初始分类结果.最后,利用全连接CRF结合Pauli相干分解伪彩色图信息,对初始分类结果再进行降噪和平滑优化,得到最终分类结果.在两地区PolSAR影像上的实验验证文中算法的有效性和可行性.

全文